SM-110-MP
SHOCK TEST MACHINE

Description
The SM-110-MP is a microprocessor controlled, pneumatically powered shock machine for accurate, repeatable laboratory and production impact testing of specimens up to (200 pounds) 90.7 kg. With appropriate pulse generators, it will produce half sine, sawtooth, and square wave pulse shapes to meet exacting military and industrial specifications or individual test requirements. Generated waveforms will comply with typical military specifications, such as MIL-STD-202, MIL-STD-810, and MIL-STD-750.

The SM-110-MP is completely portable and requires no special floor preparation or bolting. The only locational requirements are availability of compressed air, (115 V / 60 Hz - US Standard) or 230 V / 50 Hz (European Standard) power, and a floor that is reasonably level. The floor must support the weight of the machine plus the test specimen and provide a nominal safety factor to accommodate minimal shock loads. The machine may be moved with a fork lift truck.

Base
The base assembly functions as an inertial mass and reacts with the falling carriage to generate a shock pulse. The assembly is made of high-strength reinforced concrete, encased in a steel jacket, and is supported on four air mounts. It supports a carriage and guide rod and contains a pneumatic cylinder assembly an electronic pneumatic control system, and a control panel. The machine is shipped completely assembled.

Air Mount Supports
The pneumatic supports, built into the base of the machine, are inflated by the machine's compressed air supply and effectively isolate impact forces, reducing their transmission to the floor. Air pressure and inflation are controlled by a regulator and pressure gauge and may be adjusted to suit specific bad and test conditions.

Shock Pulse Generators
A variety of elastomer pads, lead pellet molds, and pneumatic pistons for generating half sine, sawtooth, and square wave pulse shapes are available for this machine. The pads are easily changed to meet a wide range of pulse requirements. Elastomer pads have proved to be the most economical and versatile generators for half sine wave forms. Molds are supplied for casting lead pellets to generate terminal peak sawtooth pulse shapes.

Carriage
The carriage is a conical shaped aluminum casting with mounting surfaces machined to dose tolerances. It has been designed for optimum strength-to-damping ratio. Steel inserts provide for attaching specimens or fixtures to the carriage, as shown on the back cover.

Maintenance
RMS / AVEX pneumatic machines are designed and constructed for long Service life and minimum maintenance. The pneumatic, electronic, and electrical systems are arranged for easy access by maintenance personnel or technicians.

Controls
The machine's pneumatic components are controlled by a self-contained microprocessor. A key pad, conveniently located on the top control panel, programs the microprocessor for charge pressure, drop height, braking, cycle count, and instrumentation trigger. Electrical power is provided by the top control panel key lock switch. Depending on the number of cycles programmed, the microprocessor will direct the machine to initiate one or multiple drop cycles at a rate of up to 8 cycles per minute. A valve plate supporting the assembly of valves, pneumatic and electrical connections, and microprocessor is mounted on the machine to provide easy access for maintenance and adjustments.

Operation
The machine is powered by compressed air with pressure ranging from (100 to 125 psi) 7 - 9 bar. The following describes a typical drop cycle: Compressed air is introduced to the lower side of the piston, raising the carriage to a selected height as determined by microprocessor programming. Once the height is reached, the holding brake is applied. The lift air is dumped and compressed air is introduced to the upper side of the piston to a desired "charge" pressure, which is measured by a transducer. As soon as the desired charge pressure reaches the proper amount, the microprocessor actuates the valve which releases the pressure on the holding brake. The carriage is then driven downward by the charge pressure, impacting on a pulse generator mounted on the anvil. Upon impact, the microprocessor directs the brake to be actuated, holding the carriage in a rebound position and preventing secondary impact. At the same time, the microprocessor will trigger the sweep of an oscilloscope or other instrumentation for recording the shock pulse.
SM-110-MP
SHOCK TEST MACHINE

Specifications

Dimensions
Base (Floor area required) (32 in. x 32 in.) 813 mm x 813 mm
* Height (Floor to top of control panel) (43 in.) 1092 mm
(Floor to carriage, down position) (50 in.) 1270 mm
(Floor to top of safety shield) (83 in.) 1600 mm

Carriage Surface (16 in. x 16 in.) 406 mm x 406 mm

Weight
Installed Weight (approx. 3100 lb.) 1406,1 kg
Shipping Weight (approx. 3410 lb.) 1546,7 kg

Specimen
Weight maximum (200 lb.) 90,7 kg
Height Not limited by machine
Size Not limited by machine
Center of gravity of specimen must be within (1½ in.)
38,1 mm of center of carriage

Performance
Stroke maximum (17 in.) 432 mm
Terminal Velocity (400 in.) 10160 mm per sec. (no load)
(285 in.) 7239 mm per sec. (150 lb.) 68 kg specimen
Cycling Rate up to 8 cycles per minute

Pulse Generator
Elastic Pads Half Sine
Lead Pellets Terminal Peak Sawtooth
Special Generators Square Wave

Utilities
Power 230 V, 50 Hz, Single Phase
Air Pressure 100-125 psi Filtered / 7 - 9 bar
Air Requirements, Maximum ~16 S.C.F.M / 430 l/min

Microprocessor
Program 1 to 10 Test
Conditions can be programmed with repetition of
up to 100 Drop Cycles.

* Airmount Inflated
** other versions available on request
Subject to change without prior notice